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Microsimulation framework 
 

The HealthLumen microsimulation consists of two models. The first model is a sophisticated 

regression model which calculates the predictions of risk factor trends over time based on data 

from rolling cross-sectional studies. The second model performs the microsimulation of a 

virtual population, generated with demographic characteristics matching those of the observed 

data. The health trajectory of each individual from the population is simulated over time 

allowing them to contract, survive or die from a set of diseases or injuries related to the 

analysed risk factors. The detailed description of the two modules is presented below. 

 

Model one: Predictions of risk factors over time 

 

Alcohol consumption is modelled as well as a range of other , body mass index (BMI), tobacco 

consumption, physical activity, salt intake, physical activity, waist circumference, nitrogen 

dioxide exposure and particulate matter 2.5µm. In general, the risk factors are categorised 

into three groups based on the cut-offs provided in published guidelines.  

For each RF, let N be the number of categories for a given risk factor, e.g., N = 3 for alcohol. 

Let 𝑘 = 1, 2, …, N number these categories and 𝑝𝑘(𝑡) denote the prevalence of individuals 

with RF values that correspond to the category 𝑘  at time t. We estimate 𝑝𝑘(𝑡)  using 

multinomial logistic regression model with prevalence of RF category 𝑘 as the outcome, and 

time t as a single explanatory variable. For 𝑘 < 𝑁, we have 
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The prevalence of the first category is obtained by using the normalisation constraint 
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which respects all constraints on the prevalence values, i.e. normalisation and [0, 1] bounds. 

Multinomial logistic regression 

 

Measured data consist of sets of probabilities, with their variances, at specific time values 

(typically the year of the survey). For any particular time, the sum of these probabilities is unity. 

Typically, such data might be the probabilities of low-risk, medium-risk, or high-risk as they 

are extracted from the survey data set. Each data point is treated as a normally distributed1 

 
1 Depending on the circumstances this assumption will be more or less accurate and more or less necessary. In 
general, it is both extremely useful and accurate. For simple surveys the individual Bayesian prior and posterior 
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random variable; together they are a set of N groups (number of years) of K probabilities {{ti, 

ki, ki |k[0,K-1]} | i[0,N-1]}. For each year the set of K probabilities form a distribution – their 

sum is equal to unity. 

The regression consists of fitting a set of logistic functions {pk(a, b, t)|k[0,K-1]} to these data 

– one function for each k-value. At each time value the sum of these functions is unity. Thus, 

for example, when measuring obesity in the three states already mentioned, the k = 0 

regression function represents the probability of being a low-risk drinker over time, k = 1 the 

probability of being an increasing-risk drinker and k = 2 the probability of being a high-risk 

drinker. 

The regression equations are most easily derived from a familiar least square minimization. In 

the following equation set the weighted difference between the measured and predicted 

probabilities is written as S; the logistic regression functions pk(a,b;t) are chosen to be ratios 

of sums of exponentials (This is equivalent to modelling the log probability ratios, pk/p0, as 

linear functions of time.) 
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The parameters A0, a0 and b0 are all zero and are used merely to preserve the symmetry of 

the expressions and their manipulation. For a K-dimensional set of probabilities there will be 

2(K-1) regression parameters to be determined.    

For a given dimension K there are K-1 independent functions pk – the remaining function being 

determined from the requirement that complete set of K form a distribution and sum to unity. 

Note that the parameterization ensures that the necessary requirement that each pk be 

interpretable as a probability – a real number lying between 0 and 1. 

The minimum of the function S is determined from the equations  

 
probabilities are Beta distributions – the likelihood being binomial. For reasonably large samples, the 
approximation of the beta distributions by normal distributions is both legitimate and a practical necessity. For 
complex, multi-PSU, stratified surveys, it is again assumed that these base probabilities are approximately 
normally distributed and, again, it is an assumption that makes the analysis tractable. 
 
Depending on the nature of the raw data set it may be possible to use non-parametric statistical methods for 
this analysis. This is possible for the HSE and GHS data sets of this study but when this has been done the authors 
can report no discernible difference in the results.       
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noting the relations 
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The values of the vectors a, b that satisfy these equations are denoted b,a ˆˆ . They provide 

the trend lines, ( )tpk ;ˆˆ b,a , for the separate probabilities. The confidence intervals for the trend 

lines are derived most easily from the underlying Bayesian analysis of the problem. 

Bayesian interpretation 

 

The 2K-2 regression parameters {a,b} are regarded as random variables whose posterior 

distribution is proportional to the function exp(-S(a,b)). The maximum likelihood estimate of 

this probability distribution function, the minimum of the function S, is obtained at the values 

b,a ˆˆ . Other properties of the (2K-2)-dimensional probability distribution function are obtained 

by first approximating it as a (2K-2)-dimensional normal distribution whose mean is the 

maximum likelihood estimate. This amounts to expanding the function S(a,b) in a Taylor series 

as far as terms quadratic in the differences ( ) ( )bb,aa ˆˆ −−  about the maximum likelihood 

estimate ( )b,aS ˆˆˆ S . Hence 
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The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate expansion 

coefficients. This matrix is central to the construction of the confidence limits for the trend lines.   



 

6 
 

 

 

Estimation of the confidence intervals 

 

The logistic regression functions pk(t) can be approximated as a normally distributed time-

varying random variable ( ) ( )( )ttpN kk
2,ˆ   by expanding pk about its maximum likelihood 

estimate (the trend line) ( ) ( )tptpk ,ˆ,ˆˆ ba=  
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Denoting mean values by angled brackets, the variance of pk is thereby approximated as 
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When K=3 this equation can be written as the 4-dimensional inner product  
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where ( )( )jjiicdij ddccP ˆˆ −− . The 95% confidence interval for pk(t) is centred given as 

( ) ( ) ( ) ( ) ttttp kkk  96.1p ,96.1ˆ
k +− . 
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Model two: Microsimulation Model 

Microsimulation model overview 

 

Simulated people are generated with the correct demographic statistics in the simulation’s 

start-year. In this year women are stochastically allocated the number and years of birth of 

their children – these are generated from known fertility and mother’s age at birth statistics 

(valid in the start-year). If a woman has children then those children are generated as 

members of the simulation in the appropriate birth year. The microsimulation is provided with 

a list of relevant diseases. These diseases used the best available incidence, mortality, 

survival, relative risk and prevalence statistics (by age and sex). The virtual population is 

initialised with diseases by simulating each individual from birth until the start year of the model 

simulation. It assumed that a person could die before the model start year. It is assumed that 

at initialisation the diseases are independent random variables. In the course of their lives, 

simulated people can die from one of the diseases caused by the particular risk factor that 

they might have acquired or from some other cause. The probability that a person of a given 

age and gender dies from a cause other than the disease are calculated in terms of known 

death and disease statistics valid in the start-year. It is constant over the course of the 

simulation. The survival rates from the risk factor-related diseases will change as a 

consequence of the changing distribution of the risk factor in the population.  

The microsimulation incorporates a sophisticated economic module. The module employs 

Markov-type simulation of long-term health benefits, health care costs and non-health care 

related costs of specified interventions. It synthesises and estimates evidence on and cost-

utility analysis. The model is used to project the differences in quality-adjusted life years 

(QALYs), lifetime health-care costs, premature mortality costs and indirect costs as a 

consequence of interventions. Over a specified time scale. Outputs can be discounted for any 

specific discount rate. 

Population module 

 

The population module contains several datasets which can be edited by the end user through 

a user interface. The population is created in the start-year and propagated forwards in time 

by allowing females to give birth and also has the ability to incorporate population projections 

(i.e. migration through minimum arrivals and departures). People within the model can die 

from specific diseases or from other causes. The <deaths by year by sex by age> file is a 

necessary input to the model when population projections are being used valid in the start 

year and usually referred to as the deaths from all causes file. This module is flexible and 

allows the user to run open and closed populations with no births. 
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Distributions 

 

Distribution name symbol note 

MalesByAgeByYear 𝑝𝑚(𝑎) Input in year0 – probability of a male having age a 

FemalesByAgeByYear 𝑝𝑓(𝑎) Input in year0 – probability of a female having age a 

BirthsByAgeofMother 𝑝𝑏(𝑎) Input in year0 – conditional probability of a birth at age 
a| the mother gives birth. 

NumberOfBirths 𝑝𝑙(𝑛) TFR, Poisson distribution, probability of giving birth 
to n children 

MaleDeathByAge 𝑝𝑊𝑚(𝑎) Input in year0, probability of a male dying at age a 

FemaleDeathByAge 𝑝𝑊𝑓(𝑎) Input in year0, probability of a female dying at age a  

 

Birth model 

 

Any female in the child bearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed capable of 

giving birth. The number of children, n, that she has in her life is dictated by the Poisson 

distribution 𝑝𝑙(𝑛) where the mean of the Poisson distribution is the Total Fertility Rate (TFR) 

parameter2.  

The probability that a mother (who does give birth) gives birth to a child at age a is determined 

from the BirthsByAgeOfMother distribution as 𝑝𝑏(𝑎). For any particular mother the births of 

multiple children are treated as independent events, so that the probability that a mother who 

produces N children produces n of them at age a is given as the Binomially distributed variable, 

 ( )
( )

( )( ) ( )( )
!

    |   1
! !

n N n

b b bm

N
p nat a N p a p a

n N n

−

= −
−

  (0.11) 

The probability that the mother gives birth to n children at age a is 
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Performing the summation in this equation gives the simplifying result that the probability pb(n 

at a) is itself Poisson distributed with mean parameter 𝜆𝑝𝑏(𝑎), 
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Thus, on average, a mother at age 𝑎 will produce 𝜆𝑝𝑏(𝑎) children in that year. 

The gender of the children3 is determined by the probability pmale=1-pfemale. In the baseline 

model this is taken to be the probability Nm/(Nm+Nf).  

 
2 This could be made to be time dependent; in the baseline model it is constant. 
3 The probability of child gender can be made time dependent.  
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Time dependent birth rates  

 

The total fertility rate (TFR) parameter for future years can be input from file if known – or 

otherwise modelled. In general, the TFR parameter is kept constant overtime. In each year of 

their simulated life (y at age a), mothers of child-bearing age can use the appropriate Poisson 

parameter 𝜆(𝑎)𝑝𝑏(𝑎) to generate the number of children in that year. Each child is recorded 

in the mother’s Life Event list and processed as part of the current family at the end of the 

mother’s life.  

Population dynamics 

 

In some year, Y, the population will consist of Nm males and Nf females with their respective 

age distributions. In the next year, Y’, the numbers will have been depleted by deaths and 

augmented by the Nnewborn births. The new, primed, population is determined from the old by 

the following equation set 
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The Population editor’ menu item Population Editor\View\Population dynamics\male 

implements these equations and draws projected populations year by year. 
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Deaths from modelled diseases 

 

The simulation models any number of specified diseases some of which may be fatal. In the 

start year the simulation’s death model uses the diseases’ own mortality statistics to adjust 

the probabilities of death by age and gender. In the start year the net effect is to maintain the 

same probability of death by age and gender as before; in subsequent years, however, the 

rates at which people die from modelled diseases will change as modelled risk factors change. 

This the population dynamics sketched above will be only an approximation to the simulated 

population’s dynamics. The latter will be known only on completion of the simulation. 

Multiple population processing 

 

Multiple populations can be used in a simulation provided they are non-overlapping (people 

cannot belong to both). 

In a simulation, Monte Carlo trials are allocated between current different populations in 

proportion to their total person count (malesCount+femalesCount). The idea being to provide 

a representative sample of the combined population.  

In a simulation, a population (pop) is current if the simulated year Y satisfies   

 pop startYear Y pop stopYear→   →   (0.22) 

Open populations 

 

This model is an open population model which allows people to enter and to depart from the 

population (departure probability p(t)). 

Open population, births and deaths 

In the year y the number of males and females in the population are denoted as {Nm(a,y), 

Nf(a,y)}, 

And we suppose that they have departure probabilities {pm(a,y), pf(a,y)}. The number of new 

arrivals into each age in the year Y are denoted {NmArr(a,y), NfArr(a,y)}.  

The following analysis applies equally to males and females and we drop the gender suffix. 

The male and female populations grow according to the recursion relations 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 , 1 1 , ,      1ArrN a y N a y p a p a y N a y a+ + = − − +    (0.23) 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 1 0 1 0, 0,      0Newborn ArrN y N y p p y N y a+ = − − + =   (0.24) 
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The longitudinal modelling of populations having known cross sectional data 

 

Given a set of X-sectional population projections {Km(a,y), Kf(a,y)|0<=a<=100; Y0<=y<=Y1} 

(the K- population) the question arises of how to model the lives of individuals within the 

population (the N-population). In the absence of precise arrival (immigration) and departure 

(emigration) statistics, many solutions exist. The population is constructed iteratively: given 

the population in year Y the next year’ population is calculated from the known birth and death 

rates; the departure probabilities and arrival numbers are found by matching with the projected 

K-population.  

Minimum arrival and departure model 

 

The minimum arrival and departure model fixes the modelled N-population in the start year 

and compensates in subsequent years either by having non-zero departure statistics (if N>K) 

or by importing new people (K>N).        

From equation (0.23): 

 ( ) ( )( ) ( )Ω  , 1 1, 1if N a y p a K a y−  + +   

 ( )( )
( )

( ) ( )( )
( )

Ω

1, 1
1 ,      1

, 1

K a y
p a y a

N a y p a


+ +
− = 

−
  

⇒ 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )Ω1, 1 , 1 1 , 1, 1      1N a y N a y p a p a y K a y a+ + = − − = + +    (0.25) 

 ( ) ( )( ) ( )Ω  , 1 1, 1if N a y p a K a y−  + +   

 ( ) ( ) ( ) ( )( ) ( )Ω, 1, 1 , 1      1ArrN a y K a y N a y p a a= + + − −    

⇒ 

 ( ) ( ) ( )( ) ( ) ( )Ω1, 1 , 1   , 1, 1ArrN a y N a y p a N a y K a y+ + = − + = + +   (0.26) 

The implementation of this model can be arranged using multiple populations – one population 

for each year of the simulation. The first population consists of the base line model that 

matches the N and K populations in the start year; subsequent populations contain the 

corrections (the arrivals, if any in that year). When arrivals enter the simulated population they 

have a start year corresponding to this population’s start year. They usually will have been 

modelled from birth in the appropriate risk and disease environment. Arrivals are ordinary 

members of the modelled population – they simply enter the population at times after the 

simulation-start time. Arrivals carry with them a population identifier.  
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The numbers of males and females and their ages are known for all populations. Within the 

micro simulation multiple populations are sampled at a rate proportional to their population 

size. 

Risk factor module 

 

The distribution of risk factors (RF) in the population is estimated using regression analysis 

stratified by both sex S = {male, female} and age group A = e.g. {0-9, 10-19, ..., 70-79, 80+}. 

The fitted trends are extrapolated to forecast the distribution of each RF category in the future. 

For each sex-and-age-group stratum, the set of cross-sectional, time-dependent, discrete 

distributions 𝐷 = {𝑝𝑘(𝑡)|𝑘 = 1, … 𝑁;  𝑡 > 0}, is used to manufacture RF trends for individual 

members of the population.  

Continuous risk factors 

 

In the case of a continuous RF, for each discrete distribution 𝐷  there is a continuous 

counterpart. Let 𝛽 denote the RF value in the continuous scale and let 𝑓(𝛽|𝐴, 𝑆, 𝑡) be the 

probability density function of 𝛽 for age group 𝐴 and sex 𝑆 at time 𝑡. Then  

 ( ) ( )| , | , , .k

k

p t A S f A S t d


 


=    (0.27) 

Equations (0.2) and (0.27) both refer to the same quantity. However, equation (0.27) uses the 

definition of the probability density function to express the age-and-sex-specific percentage of 

individuals in RF category k at time t. Equation (0.2) gives an estimate of this quantity using 

equation (0.1) for all k = 0, …, N. The cumulative distribution function of 𝛽 is 

At time t, a person with sex 𝑆 belonging to the age group 𝐴 is said to be on the 𝑝–th percentile 

of this distribution if 𝐹(𝛽|𝐴, 𝑆, 𝑡) = 𝑝/100. Given the cross-sectional information from the set of 

distributions 𝐷, it is possible to simulate longitudinal trajectories by forming pseudo-cohorts 

within the population. A key requirement for these sets of longitudinal trajectories is that they 

reproduce the cross-sectional distribution of RF categories for any year with available data. 

The method adopted here and in the earlier Foresight report (1) is based on the assumption 

that person’s RF value changes throughout their lives in such a way that they always have the 

same associated percentile rank. As they age, individuals move from one age group to another 

and their RF value changes so that they have the same percentile rank but of a different RF 

distribution. In a nutshell, we assume (in accordance with research on the long-term success 

rate in dieting) that relatively fat people will remain relatively fat and relatively thin people will 

remain relatively thin. Crucially it meets the important condition that the cross-sectional RF 

distributions obtained by simulation match the RF distributions of the observed data. 

The above procedure can be explained using the example of the alcohol consumption 

distribution. The alcohol consumption distributions are known for the population stratified by 

sex and age for all years of the simulation (by extrapolation of fitted model, see equation (0.1)

). A person who is in age group 𝐴 and who grows ten year older will at some time move into 

the next age group 𝐴′ and will have an alcohol consumption that was described first by the 

distribution 𝑓(𝛽|𝐴, 𝑆, 𝑡)  and then at the later time 𝑡′  by the distribution 𝑓(𝛽|𝐴′, 𝑆, 𝑡′) . If the 
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alcohol consumption of that individual is on the 𝑝-th percentile of the alcohol consumption 

distribution, their alcohol consumption will change from 𝛽 to 𝛽′ so that 

 
1 | , ,

100

p
F A S t −  

=  
 

  (0.28) 

 ( )1 1| , , ( | , , )| , ,
100

p
F A S t F F A S t A S t  − − 

=  = 
 

        (0.29) 

Where 𝐹−1 is the inverse of the cumulative distribution function of 𝛽, which we model with a 

continuous uniform, normal or lognormal distribution (depending on the risk factor) within the 

RF categories. Equation (0.29) guarantees that the transformation taking the random variable 

𝛽 to 𝛽′ ensures the correct cross-sectional distribution at time 𝑡′.  

The microsimulation first generates individuals from the RF distributions of the set 𝐷 and, once 

generated, grows the individual’s RF in a way that is also determined by the set 𝐷. It is possible 

to implement equation (0.29) as a suitably fast algorithm. 

Disease module 

 

Disease modelling relies heavily on the sets of incidence, mortality, survival, relative risk and 

prevalence statistics. The microsimulation uses risk dependent incidence statistics and these 

are inferred from the relative risk statistics and the distribution of the risk factor within the 

population. In the simulation, individuals are assigned a risk factor trajectory giving their 

personal risk factor history for each year of their lives. Their probability of getting a particular 

risk factor related disease in a particular year will depend on their risk factor state in that year. 

The necessary equations are given below. The microsimulation model has the ability to model 

discrete multiple stages of a disease.  

Once a person has a fatal disease (or diseases) their probability of survival will be controlled 

by a combination of the disease-survival statistics and the probabilities of dying from other 

causes. Disease survival statistics are modelled as age and gender dependent exponential 

distributions.        

Relative risks 

 

The reported incidence risks for any disease do not make reference to any underlying risk 

factor. The microsimulation requires this dependence to be made manifest.  

The risk factor dependence of disease incidence has to be inferred from the distribution of the 

risk factor in the population (here denoted as ); it is a disaggregation process: 

Suppose that  is a risk factor state of some risk factor  and denote by pA(d|,a,s) the 

incidence  probability for the disease d given the risk state, , the person’s age, a, and gender, 

s. The relative risk A is defined by equation (0.30). 
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| 0
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 

  



=


  (0.30) 

Where 0 is the zero risk state (for example, the moderate state for alcohol consumption). 

The incidence probabilities, as reported, can be expressed in terms of the equation, 

 

( ) ( ) ( )

( ) ( ) ( )0 |

, , , ,

, , , ,

A

A d A

p d a s p d a s a s

p d a s a s a s





  

    





=

=




  (0.31) 

Combining these equations allows the conditional incidence probabilities to be written in terms 

of known quantities 

 ( ) ( )
( )

( ) ( )|

|

,
, , ,

| , ,
Ad

Ad A

p d a s
p d a s a s

a s a s


  
   

=


  (0.32) 

Previous to any series of Monte Carlo trials the microsimulation program pre-processes the 

set of diseases and stores the calibrated incidence statistics pA(d|a0, a, s).  

For each scenario the incidence statistics are calibrated against the baseline trends. 

Approximating missing data points 

 

Published disease statistics are frequently incomplete and occasionally inconsistent. The 

microsimulation program makes use of a number of supporting methods to check and, as 

necessary, to estimate missing disease statistics.  

Public health intervention module 

 

The HL model is flexible and a number of different public health interventions can be simulated 

in the model from population to individual level interventions. The intervention can be 

implemented to impact on one or more of the modules such as the risk factor and disease 

modules.  

Model output module 

 

Cross-sectional outputs (epidemiological and economic) per 100,000 of the population are 

computed for each year of the simulation. 
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Epidemiological outputs 

 

A range of different epidemiological outputs are produced by the model including: 

• Incidence rates  

• Cumulative incidence rates  

• Prevalence rates  

• Mortality rates  

• Premature mortality rates  

• Quality Adjusted Life Years (QALY)  

• Potential Years of Life Lost (PYLL)  

Some of these outputs are standard and do not require further explanation. The QALY and 

PYLL outputs can be discounted if required and this can be defined by the user at the start of 

a modelling project. The discounting rate each year (Discount(year)) was calculated as shown 

in equation (0.33). 

 
1

( )
(1 ) startyear year

Discount year
R

−
=

+
  (0.33) 

Where, yearstart refers to the start year of the modelling which is 2018 in this study and R is the 

annual discount rate. The following sections describe some of these outputs in more detail. 

Potential Years of Life Lost (PYLL) 

 

The PYLL (PYLLi(year))  for an individual i in the year “year” will be calculated from equation 

(0.34). Where yearDi refers to the year in which an individual i dies and ageDi refers to the age 

at which an individual dies. 
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 if AgeD
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0                                                    
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ear

= −

=

+



= 
 

−




  (0.34) 

For each individual (i) the number of years between the age of death and the life expectancy 

at birth (LEi(atbirth)) will be calculated. PYLLi(year) is the total number of years of life lost (due 

to premature death) by individual i (if they died in year “year”). 
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0
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( ) 100,000      if   
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PYLL year

annualPYLL year Age LE
N

Age LE

=



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




  (0.35) 

The average annual PYLL will be calculated each year in the microsimulation. This metric will 

consider individuals who are alive in a given year (N(year)). For each individual the difference 

between the reference age (life expectancy) and the age of death will be calculated. 
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Potential years of life lost error 

 

This error will be calculated in a similar way to the premature mortality costs. The costs are 

calculated by considering the error generated from each age in each year. 

For each age a, 

a

Rate of death at age a in a given year

d Number of inviduals at age a that die in a given year

Total number of individuals who are alive in a given year

The weight per case at age a

( )

a

a

a
a

a
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a

p
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=
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1

( ( ))

Rate of death at age a in the whole population in a given year

Total number of individuals who die in a given year
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i

i
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i
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a
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R

D

D
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=
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=
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(1 )

95% CI per 100,000 costs at age a=1.96 * *100000a a
a

a

p p
W

N

 −
  
 

  (0.36) 

Where the standard deviation (σ) is calculated as shown in equation 

 
(1 )a a

a

a

p p

N


−
=   (0.37) 

For each year the standard deviation for all age groups is calculated as shown in equation. A 

weighted average of the variance from each age group is calculated. 

 2 2

0

a LE

a a

a

RW 
=

=

=    (0.38) 

The 95% CI for the premature mortality costs in a given year will be calculated from 

 PMC 95%CI per 100,000 1.96 *100000 =   (0.39) 
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Health Economic outputs 

 

The following costs are produced by the model during the simulation: 

• Direct healthcare costs 

• Premature mortality costs 

• Potential years of life lost 

• Indirect costs 

• NHS social care costs 

Premature mortality costs (PMC) 

 

1

( )*Discount(y+(i-age )    if 

0                                                                  if 

death

i LE

death death

i age

death

Income i age LE
PMC

age LE
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=




= 
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
  (0.40) 

The premature mortality costs for each individual are calculated by summing over the income 

costs from the age of death until the LE.  
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annualPMC year ge LE
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ge LE

=



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
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  (0.41) 

The average annual PYLL will be calculated each year in the microsimulation. This metric will 

consider individuals who are alive in a given year (N(year)). For each individual the difference 

between the reference age (life expectancy) and the age of death will be calculated. 
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